Соединения типа А2В6
9a9d8c67

Методы переноса в протоке.


Во многих случаях, например, для выращивания эпитаксиальных пленок элементарных полупроводников или соединений с не­значительными отклонениями от стехиометрии процессы переноса намного удобнее проводить в проточных системах. В проточных системах реакция у источника контролируется независимо, т. е. значения Т и Р в зоне источника не связаны со значениями Т и Р в зоне кристаллизации Скорость переноса молекул летучего сое­динения может регулировался скоростью потока газа-носителя, что позволяет увеличить скорость переноса Наконец, в проточ­ном методе легко вводить легирующие примеси или избыток одного из компонентов соединения Расчет скорости переноса в проточных системах значительно проще, а потому легче устано­вить условия проведения процессов. Перенос осу­ществляется простои гетерогенной обратимой реакцией

IA(тв) + kB(г) Û jС(г)

 которая происходит в аппарате, изображенном на рис. 636. Газ — реагент В проходит под исходным веществом А и образует соединение С, которое в интервале температур Т2®Т1  находит­ся в газообразном состоянии. Молекулы соединения С, увлекае­мые избытком газа В или инертным газом (например, гелием или аргоном), переносятся в зон) кристаллизации, находящуюся при температуре Т1, где происходит обратная реакция разложе­ния молекул С на твердое вещество А и газ В. Эта реакция про­исходит как па стенках аппарата, так и на монокристаллических подложках-затравках, предварительно введенных в аппарат. По­скольку поверхность подложки значительно меньше поверхности стенок аппарата, то выход материала, нарастающего на подлож­ку, невелик.

Обозначим через в число молей газа реагента В, вводимого в аппарат, через п'В —число молей газа В, находящихся в сво­бодном состоянии в зоне Т1  , через п"В —число молей газа В в зоне Т2, через п’с и п"с число молен соединения С соответственно в зонах Т1 и Т2. Баланс компонента В

nB=n’B+k/j *n’C= n’’B+k/j n’’C   6.57

Количество вещества А, вступающее в реакцию с В при тем­пературе Т2, в пересчете на моль вводимого в систему реагента В, составляет  i/j* n’C/nB.


Количество вещества А, выводимого из системы током газа T1 ,i/j· n’C/nB.

Количество вещества А (nA), выделяющегося при температу­ре T1,

NA/nB = i/j· n’C/nB.– i/j· n’’C/nB.= i/j· Dn’C/nB.  (6,58)

Поскольку имеем дело с газом, целесообразно вводить в ра­счеты значения парциальных давлений всех компонентов РВ и РС- Тогда можно написать:

nC/nB=PC/PB (1/(1-PC/PB(j-k/j))

Если j = k, то выражение в скобках равно единице. Если же j=/=k, но PC<<PB  , то и тогда выражение в скобках можно принять равным единице. Объединяя уравнения (6.57) и (6.58), находим количество перенесенного вещества А:

nA = i/j·DPCnB/PB                 6.60

Зная величину констант равновесия для прямой и обратной реакций при температурах Т1 и Т2 и принимая, что общее давление в системе равно РB(РB>РC), можно рассчитать DРс,  а сле­довательно, и выход реакции.

Расчеты эффективности реакций переноса сводятся, таким образом, к определению разности парциальных давлений моле­кул-переносчиков в зонах источника и кристаллизации. Перенос вещества существует тогда, когда эта разность имеет достаточно большое значение.


Содержание раздела