p-i-n-ФОТОДИОДЫ




Рис. 1 Принципиальное устройство ГФТ


Принципиальное устройство ГФТ показано на рис. 1( его зонная диаграмма эмиттер — база — на рис. 55. Заштрихованной показана так называемая легированная плоскость, которая пред­ставляет собой тонкий (~0,1 мкм) сильно легированный акцепто­рами (Nа~1О11 см-2) слой, вводимый при резком гетеропереходе для снижения рекомбинационных потерь на границе раздела ба­за — эмиттер. Широкозонный гетероэмиттер является прозрачным окном для излучения, поглощаемого в относительно узкозонной базе. Наличие пичкового потенциального барьера Dxc для неос­ковных носителей базы на границе гетероперехода позволяет не­зависимо выбирать уровни легирования эмиттера Na и базы Ns так, чтобы N3<<N6, разделить области поглощения    и    переноса.

При этом удается достигнуть практически максимальной доб­ротности фотоприемника (— 100 ГГц) при G>100. Гетерофототранзистор — двухполюсный при­бор, который не имеет подклю­ченной базы.

Как высокодобротный фотоприемник ГФТ является альтерна­тивой лавинным фотодиодам, отличающейся большей технологич­ностью и менее жесткими допусками на разброс его параметров, в том числе напряжения смещения. По Ропор ГФТ существенно (на порядки величин) уступает лавинным фотодиодам. Однако для ин­тегрально-оптических схем этот параметр в ряде случаев не яв­ляется критичным.

Схема включения ГФТ соответствует схеме с общим эмитте­ром, для которой

где vб , v3 — средние скорости электронов около эмиттерного края базы и дырок около базового края эмиттера соответственно; 5vб/vз<50; Dxv= q(Up—Un)=DEg—DxC— скачок потенциала валентной зоны на границе гетероперехода; Dxс — скачок потен­циала для зоны проводимости на границе гетероперехода; DEg = = ЕЭ—Еб — разница ширины запрещенных зон эмиттера и базы (рис. 55). Из выражения  следует, что для получения больших G при Nэ/Nб<<1 и Vб/Vэ<50 необходимо выбирать гетеропары, у которых Dxc/Dxc велико и Dxv>>kT. Для AlxGa1-x As/GaAs при x = 0,28 Dxс=0,3 эВ, а Dxv = 0,053 эВ  (~2 kT при T=300° С).




Содержание  Назад  Вперед